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EXECUTIVE SUMMARY 

 

Oak Ridge National Laboratory is developing advanced low-Cr oxide dispersion strengthened 

(ODS) FeCrAl alloys for accident tolerant fuel (ATF) cladding. This report presents the 

characterization of two new ODS FeCrAl tubes by using powder commercially mechanically 

alloyed by Zoz GmbH, which underwent high-precision tube rolling with two different annealing 

schedules. This work shows that the ODS FeCrAl tube without recrystallization exhibits 

consistent mechanical behavior in comparison with a previously produced tube. The second tube, 

which underwent a full recrystallization step before the final tube rolling step, showed some 

circumferential cracking and exhibited limited ductility in the axial tube tensile tests. Based on 

current and prior work on the ODS FeCrAl alloy system, this report compares the current state of 

the scientific literature on the alloy class with that of wrought FeCrAl without oxide additions. 

Then, this report makes recommendations for future research directions that should be 

undertaken to increase the technology readiness level for ODS FeCrAl as a viable ATF candidate 

material. 

 

This report has been submitted as fulfillment of milestone M3FT-20OR020202064 titled, “STEP 

Report on Advanced ODS FeCrAl Alloys for Fission Applications” for the US Department of 

Energy Office of Nuclear Energy’s Advanced Fuel Campaign of the Fuel Cycle R&D program. 
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STEP REPORT ON ADVANCED ODS FECRAL ALLOYS FOR 
FISSION APPLICATIONS 

1. Introduction 

After the Fukushima Daiichi accident in 2011, extensive research was conducted to develop new accident 

tolerant fuel (ATF) cladding materials that serve as drop-in replacements for existing Zr-based cladding to 

help mitigate nuclear accident scenarios, enhance reactor safety, and extend reactor lifetimes [1, 2]. Initial 

alloy development efforts at Oak Ridge National Laboratory (ORNL) focused on selecting materials that 

could withstand steam oxidation at elevated temperatures, which led to the development of low-Cr 

nuclear-grade FeCrAl alloys with Y additions for this purpose [3-7]. 

In addition to the effort of developing wrought FeCrAl alloys, research was conducted on similar low-Cr 

FeCrAl variants with oxide particle dispersions, which are called oxide dispersion strengthened (ODS) 

FeCrAl alloys [8-14]. The main goal of this initiative was to build on the high-temperature oxidation 

resistance of the Al-added ferritic alloy while simultaneously improving high-temperature strength and 

irradiation resistance by embedding many density of complex ternary oxides (2–4 nm) throughout the 

microstructure. The many interfaces would serve as sinks for irradiation-induced defects and reduce 

irradiation hardening in normal light water reactor-operating temperature regimes. Additionally, these 

precipitates would simultaneously serve as obstacles for dislocation motion within the microstructure, 

thereby increasing strength, creep properties, and burst properties at high temperatures because the burst 

properties of the ferritic FeCrAl alloy are dominated by the onset of plastic instability—and thus the 

ultimate tensile strength of the material—during accident scenarios [15]. 

In May 2015, a technology implementation plan was developed for the FeCrAl system, which served as 

the backdrop for wrought and ODS FeCrAl development for the next half decade [16]. This report 

reviews the current status of the ODS FeCrAl program through the lens of prior work and new results 

from FY20 research. Then, future research directions are recommended for the ODS FeCrAl program 

with a specific aim to increase the technology readiness level (TRL) of the concept.  

2. Insights from FY20 Characterization of Two New ODS FeCrAl 
Tubes with Varying Microstructures 

As outlined in prior published works, the optimized chemical composition based on alloy oxidation and 

mechanical property evolutions was refined to an ODS FeCrAl alloy containing Fe-10/12Cr-6Al-

0.3Zr+0.3Y2O3 (referred to as CrAZY for the remainder of this work) [8-14]. Additionally, previous 

evaluations of the effect of mechanical alloying time and extrusion temperature illustrated the need for 

careful control of these parameters to ensure sufficient strength and ductility without substantial particle 

coarsening within the alloy microstructure [13, 14]. Through a collaboration with Nippon Nuclear Fuel 

Development Co. Ltd., a previously extruded master rod of the CrAZY ODS alloy was pilgered 

successfully into a thin-walled tube measuring 1.8 m long with a tube outer diameter and thickness of 

8.5 mm and 0.5 mm, respectively [9]. In this work, two new thin-walled ODS FeCrAl tubes were 

produced by using two different thermomechanical processing routes to boiling water reactor-relevant 

dimensions. One tube was fabricated by using similar annealing treatments used previously for the initial 

successful CrAZY tube [9], and a modified annealing treatment was used on the other to investigate how 

fabricability changes with grain structure.   
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2.1 Tube Fabrication Process 

The CrAZY tubes presented in this work (heat designations Z6 and Z7, respectively) were fabricated by 

using the same powder metallurgical route as the original CrAZY tube (heat designation OR1). Five 

mechanical alloying runs were performed under Ar atmosphere with 3 kg batches of Fe-12Cr-6.1Al-

0.3Zr+0.3Y2O3 (126ZY) powder supplied as a mixture of gas atomized FeCrAlZr powder acquired from 

ATI Powder Metals and nanocrystalline yttria from Alfa Aesar. Milling was performed by Zoz GmbH 

with a larger CM20 Simoloyer milling unit at rotational speeds of 230 RPM/394 RPM in cycles of 9 and 

3 minutes, respectively, for a total of 40 hours. As-milled powder was kept in an Ar atmosphere during 

removal from the unit and shipped back to ORNL. As-received 126ZY powder was packed into 4 in. mild 

steel extrusion cans under Ar by using a glove box to minimize contact with air. Powder was packed in an 

identical manner to prior powder packing methodologies previously performed in air whereby powder 

was poured into the extrusion cans and then agitated to maximize powder packing into each can. Cans 

were welded and subjected to a degassing step at 10-6 Torr by using a diffusion pump for 24 hours at 

300°C. Each can was annealed for 2 hours at 950°C in a box furnace, followed by immediate transfer to a 

second box furnace held at 1,050°C for 1 hour and then subsequent extrusion. These parameters were 

chosen to (1) allow for a homogeneous sample temperature of 950°C for nanoprecipitate nucleation and 

growth and (2) minimize precipitate coarsening at the 1,050°C temperature based on previously 

developed particle coarsening models [14].  

There are a few differences between the two tubes presented here (Z6 and Z7) and the previous tube 

(OR1), as presented in Table 1 and  Table 2. First, the compositions are slightly different; the Cr content 

was increased from 10–12 wt.% to provide more effective oxidation resistance. Additionally, the powder 

used for the Z6 and Z7 alloys was ball milled by the commercial vendor Zoz GmbH in a larger Simoloyer 

unit with a 3 kg powder capacity. This is in comparison with the Simoloyer CM08 unit with a 1 kg 

powder capacity at ORNL. The milling times remained the same, and rotation speeds were adjusted to 

ensure equivalent energy deposition to the milled powders by the milling media. For the Z6 and Z7 tubes, 

the powder was kept under Ar until welded inside the extrusion cans, whereas for the OR1, powder 

transfer from the ball mill machine to the extrusion can was performed in air. The last difference between 

the Z6 and Z7 extrusion was the use of different pre- and post-extrusion annealing conditions to better 

optimize the precipitate distribution and hardness.  

Table 1. Master rod processing parameters for the OR-series and Z-series CrAZY alloys. 

CrAZY alloy OR1 Z6/Z7 

Powder vendor ATI ATI 

Mechanical alloying vendor N/A (ORNL) Zoz GmbH 

Ball-mill used Zoz Simoloyer CM08-8lm Zoz Simoloyer CM20-20lm 

Milling time (hours) 40 40 

Milling speeds (RPM) 350/600 230/395 

Time at speed (minutes) 9/3 9/3 

Powder produced (kg) 2  15  

Milling atmosphere Ar Ar 

Extrusion can size 4 in. OD 4 in. OD 

Degassing 24 hours at 300°C 24 hours at 300°C 

Pre-extrusion anneal 1,100°C/1 hour 950°C/2 hours + 1,050°C/1 hour 

Post-extrusion anneal 1,000°C/5 hours N/A 
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Table 2. Composition of the CrAZY rod/tube variants in wt.%. 

ID Fe Cr Al Zr Y C N O 

CrAZY-OR1 83.46 9.71 6.03 0.27 0.22 690 171 1140 

CrAZY-Z6/Z7 81.71 11.56 6.01 0.30 0.28 230 140 2500 

 

Once the master rods were precision gun-drilled into 2 mm thick-walled tubes, they underwent four high-

precision tube cold rolling (CR) passes to a total reduction of wall thickness greater than 80%, as shown 

in Figure 1. In this figure, the solid black line indicates the former evolution in microhardness for the 

initial CrAZY-OR1 tube as a function of processing step, and the red dashed line indicates the evolution 

of CrAZY-Z6 and CrAZY-Z7. After the third rolling step, the dashed line changes to either blue (CrAZY-

Z6) or purple (CrAZY-Z7) because the annealing step differed at this point between the two tubes. After 

each rolling step, there is a general trend in that as thickness is reduced, the material becomes harder, and 

then after the annealing treatment, the hardness drops. This decrease in hardness is due to dislocation 

recovery and is necessary to maintain the hardness below 400 HV, the targeted limit based on the tube 

producer input. The temperature for each intermediate annealing step is called out for each alloy in their 

respective color in the figure. The selection of the intermediate annealing treatment was informed by 

targeted annealing treatments on small sections of the ends of each tube at each processing step followed 

by a scanning electron microscopy investigation to see whether any grain recrystallization or growth 

occurred. Generally, the annealing treatment desired was one that induced recovery but not 

recrystallization, so when appreciable recrystallization and grain growth started to be visible, the 

temperature below this point was chosen as the desired annealing temperature, as shown in Figure 2.  

 
Figure 1. Microhardness evolution of the three ODS FeCrAl tubes fabricated to date as a function of 

thermomechanical processing steps. 
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Figure 2. Scanning electron images across the wall thickness of an ODS FeCrAl specimen following the 

second pilgering step and various thermal annealing treatments. As the annealing temperature increases 

from 850–1,000°C, larger area fractions are occupied by recrystallized grains, and 850°C was selected as 

temperature for tube annealing 
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As highlighted in Figure 1, the annealing treatments diverged for CrAZY Z6 and Z7 after the third high 

precision tube rolling step. For the Z6 tube, it was desired to create a comparable tube to OR1 to 

demonstrate consistency in tube production. For Z7, it was of interest to see whether higher ductility 

could be accomplished through full recrystallization followed by some additional deformation. Fully 

recrystallized ODS FeCrAl alloys were recently demonstrated to have at least some ductility and 

attractive high-temperature strength [17, 18]. However, full recrystallization reduces the yield and 

ultimate tensile strength appreciably due to the loss of essentially all Hall-Petch strengthening; thus, it 

was of interest in this work to see whether additional dislocations could be reintroduced into the 

microstructure via cold work to increase the dislocation strengthening of the microstructure since the 

dislocations would be easily pinned by existing oxide precipitates. To accomplish this task, 

microhardness measurements (Figure 3) were coupled with microscopy to evaluate when full 

recrystallization would occur after the third rolling step, which is indicated by the sudden drop in 

hardness at the 1,200°C annealing condition. The result was a recovered microstructure for Z6 and a fully 

recrystallized microstructure for Z7 after the third CR.  

Unfortunately, although effective at cold working the microstructure, the additional rolling step (CR4) 

resulted in the formation of circumferential cracks throughout the final Z7 tube (Figure 4). These cracks 

could be the result of a variety of factors, such as: (1) the lack of deformation modes for the abnormally 

large grains within the fully recrystallized microstructure, (2) the highly anisotropic stress state involved 

with tube rolling, and (3) the existence of larger carbides and nitrides that would have coarsened 

considerably during a 1,200°C annealing treatment. In comparison, the ultrafine-grained Z6 tube did not 

show any indication of cracking following the recovery anneal at 850°C. 

 
Figure 3. Example of microhardness variation in an ODS FeCrAl tube following the third pilgering step, 

annealed at increasing temperatures from 850–1,300°C. The figure shows point histograms and box plots 

that summarize the data at each annealing treatment. 

 
Figure 4. Photos of as-received CrAZY Z6 (top) and Z7 (bottom), following the final pilgering step. 

Multiple circumferential cracks are noticeable in the Z7 tube subjected to a  

full recrystallization anneal before the final pilgering step. 

CrAZY-Z6

10 cm

CrAZY-Z7
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2.2 Microstructure-Mechanical Property Correlations 

A more detailed microstructure investigation shows significant similarity between the Z6 and OR1 tubes 

while highlighting the highly chaotic cold-worked microstructure for the Z7 tube. Figure 5 highlights an 

identical microstructure for Z6 compared to what was previously reported for CrAZY-OR1 [19]. By 

coupling the forward scattering detector (FSD) image with the electron backscatter diffraction (EBSD) 

band contrast map, numerous nanometer-scale grains are identified, and elongated micron-sized grains 

with significant subgrain texture are also identified. All grains appear to be highly textured; perpendicular 

to the tube axis, there are strong [001] and [110] orientations (red and green colors, respectively), and 

parallel to the tube axis there are predominantly [110] orientations. This is consistent with alpha rolling 

fibers in body-centered cubic materials [20] and is identical to that previously seen for OR1. Conversely, 

the Z7 tube shows significant deformation across large grains, spanning hundreds of microns to 

millimeters in size (Figure 6). The large field-of-view ESBD image shown in Figure 5 spans the entire 

wall thickness of the cladding tube, and only four to five grains exist across the cladding thickness. 

However, the original grains are difficult to visualize since the entire field of view is filled with 

deformation bands ranging from 10 to 40 degrees in misorientation with respect to the surrounding grain 

structure.  

In addition to changes associated with grain size, the higher temprature recrystallization heat treatment 

did coarsen the nanoscale (Y, Al, O)-rich precipitates within the CrAZY-Z7 alloy. This precipitate 

coarsening was captured by using atom probe tomography datasets, several of which are presented in 

Figure 7. In Figure 7, isoconcentration surfaces—surface boundaries delineating regions in which 

cumulative Y, Al, and O concentration exceeds 3 at.%—clearly show the precipitates homogeneously 

distributed throughout the microstructures in Z6 and Z7, respectively. Additionally, atom maps for  

 
Figure 5. EBSD data for CrAZY Tube Z6. The (a) FSD and (b) band contrast images show the submicron 

grain structure, and the corresponding inverse pole figure maps highlight the orientation of each grain 

with respect to directions parallel to the (c) normal direction and (d) rolling direction. 

(a) FSD Image (b) Band Contrast
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molecular ion species (Y, YO, AlO, and Zr) are also shown to highlight which elemental species are 

within the precipitates (Y, Al, O) and which are not (i.e., Zr). This behavior is consistent with a recently 

published work that highlights the importance of C and N on the precipitation state in these CrAZY alloys 

[21], which is the main reason why the precipitation state in this alloy differs from that previously 

reported for similar FeCrAlZrY alloys developed elsewhere [22]. The additional 1,200°C anneal required 

to recrystallize the Z7 microstructure coarsened the average precipitate diameter because the diameters 

for Z6 and Z7 were calculated to be 5.3 and 7.5 nm, respectively. Additionally, the number density 

dropped from 2.1 × 1023 m-3 to 2.7 × 1022 m-3 after the anneal. Box plots and histograms for precipitate 

distributions in the CrAZY-Z6 and Z7 alloys are provided in Figure 8. 

These microstructural changes due to recrystallization are important not only to the mechanical properties 

but also to the irradiation resistance of the tubes. The first of these two ramifications was investigated via 

axial tube tensile testing. By using a mechanical test frame and a strain rate of 10-3 s-1 at room temperature 

in the air, each specimen was tested to failure. A visual representation of the shoulder loaded axial tube 

specimen is provided in Figure 9 along with two stress-strain curves for the original CrAZY-OR1 tube, 

the Z6 tube, and the Z7 tube. There was minimal sample-to-sample variation for each specimen condition. 

As shown in Figure 1, the total deformation experienced by the Z-series tubes was similar to that 

experienced originally by the CrAZY-OR1 alloy. The similarities in terms of microstructure and tensile 

properies between Z6 and OR1 highlight the good reproducbility of the tubes fabrication procedure. The 

more drastic changes pertain to the Z7 alloy, which has approximately half the ultimate tensile strength 

(~800 MPa) in comparison with the Z6/OR1 alloys (~1,300 MPa). Interestingly, this lower yield strength 

for Z7 does not result in higher ductility since the Z6 and Z7 alloys showed approximately 5% uniform 

elongation before entering into a region of plastic instability and eventual failure. Improving tube ductility 

was one key reason for performing the recrystallization step. This lack of ductility for Z7 is likely 

attributed to the already saturated microstructure with significant defects due to the final CR4 step, as 

exemplified by the deformation band structure in Figure 6.  

 
Figure 6. EBSD data for CrAZY Tube Z7. The (a) FSD and (b) band contrast images show very large 

grains with significant intragranular deformation bands. Corresponding inverse pole figure maps  

highlight the orientation of each grain with respect to directions parallel to the 

 (c) normal direction and (d) rolling direction. 

[111]

[011][001]

200 µm

(a) FSD Image (b) Band Contrast (c) IPF - ND (d) IPF - RD

RD

TD

ND



 STEP Report on Advanced ODS FeCrAl Alloys for Fission Applications 
8 September 2020 

 
Figure 7. Atom probe tomography analysis confirms that the precipitates within Z6 and Z7 are  

enriched in Y, Al, and O. Isosurfaces (left) use a concentration threshold of 3 at.%  

(Y, Al, O) atop black dots that represent 0.5% of matrix Fe atoms. 

 
Figure 8. Graphical summaries of nanoprecipitate size distributions in the Z6 and Z7 tubes, following 

tube processing. The higher annealing temperature used to fully recrystallize the Z7 tube, 1,200°C,  

shifted the size distribution to larger precipitate radii in comparison with Z6  

due to precipitate coarsening. 
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Irradiation resistance, specifically resistance to phenomena such as irradiation hardening, requires a 

sufficiently high density of nanometer-scale surfaces, or sinks, within the microstructure at which 

irraidation-induced defects can recombine. This is a difficult threshold to achieve since sink strengths in 

excess of 1016 m-2 would be required to ensure this condition [23]. This sink strength is a function of 

microstructural ,features such as grain size, precipitate dispersion, and disloction density—all three of 

which are affected by the recrystallization and rolling treatments. Although the dislocation density is still 

appreciably high in the Z7 alloy after the final tube thickness reduction rolling step, the quantitative 

dislocation density in both alloys is difficult to estimate, so this will be removed from the current analysis. 

Instead, considering a change in grain size from ~650 nm for Z6 to ~1 mm for Z7, the sink strength from 

grain boundaries almost dissapears; furthermore, the coarsened precipitate structure similarly decreases 

the sink strength. When these factors are considered, the sink strengths for Z6 and Z7 are calculated as 

7.7 × 1015 m-2 and 1.3× 1015 m-2, respectively. Therefore, the Z7 alloy is likely not as effective at 

mitigating irradiation hardening as the Z6 and OR1 alloys. However it is possible that fully recrystallized 

ODS FeCrAl will still outperform these wrought alternatives. 

The production of two additional ODS FeCrAl tubes in FY19 and FY20 allowed for the continued 

investigation of how thermomechanical processing can be used to optimize the material properties of the 

alloy system. The modified recrystallization and rolling procedure for Z7 resulted in limited 

deformability, as exemplified by the circumferential cracking of the tube and the axial tube tensile tests. It 

is clear from the literature that a fully recrystallized microstructure will provide less anisotropy in the 

mechanical response of the tubes. It was also recently demonstrated that even in the recrystallized form, 

recent heats of ODS FeCrAl exhibit competitive creep properties in comparison with 9Cr ODS alloys 

[18]. This data, coupled with the limited ductility shown in previous reports on non-recrystallized CrAZY 

alloys, highlights the need to recrystallize future ODS FeCrAl alloys for the application of ATF cladding. 

Although this will adversely affect the ability of the ODS FeCrAl alloy to prevent phenomena—such as 

irradiation hardening, which has been the primary motivation for keeping the non-recrystallized 

microstructure for the CrAZY alloys in the past—it is still unclear whether the still-high number density 

of (Y, Al, O)-rich precipitates will help prevent other phenomena, such as deleterious alpha-prime 

precipitation [24]. 

 
Figure 9. Axial tube tensile tests directly compare the original pilgered CrAZY-OR1 tube with the 

properties of the two new CrAZY tubes (Z6 and Z7). On the left, the experimental setup for  

the tube tensile test is provided, and on the right, engineering stress/strain curves  

at room temperature are overlaid for each tube. 
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3. Increasing the TRL for ODS FeCrAl 

In the original FeCrAl implementation plan, various research directions were highlighted, which cover 

realms of basic alloy science, advanced manufacturing to create thin-walled tubes, the evaluation of 

unirradiated and irradiated material properties for the alloy in prototypic geometries, and an 

understanding of in-reactor behavior in normal operating conditions and in off-normal conditions. A list 

of each of the primary research directions is provided in Table 3. Over the past decade, significant 

advances in research for wrought FeCrAl alloys have been made in many of these areas, and a selection 

of some of the pertinent research is highlighted in Table 3. The handbook of material properties for 

FeCrAl alloys [25] provides a more in-depth review of the current state-of-the-art research on the wrought 

FeCrAl system.  

 

In the same wrought FeCrAl technology implementation plan, the original ODS FeCrAl research 

directions were also highlighted, which overlapped with the wrought FeCrAl objectives but initially 

focused more on basic alloy science due to the lower TRL that existed at the time. Since FY14, most of 

the work on ODS FeCrAl at ORNL has focused on alloy optimization and tube fabrication. This is 

reinforced by the list of applicable milestone reports presented in Table 4. These realms also included 

unirradiated material property evaluations with respect to oxidation and mechanical properties. There was 

some initial work on ODS FeCrAl weldments, but little work has been completed in this realm at ORNL 

on optimized Generation 2 ODS FeCrAl alloys, especially in thin-walled tube forms. Additionally, there 

have been initial irradiations on tensile specimens of Generation 1 ODS FeCrAl and similar irradiations 

on an initial ODS FeCrAl thin-walled tube manufactured in FY18. However, irradiation data on fully 

recrystallized ODS FeCrAl will be critical for future qualification of the alloy system.  

 

In Table 3, a variety of references to pertinent literature sources on (1) legacy high-Cr ODS FeCrAl, (2) 

recently developed lower Cr ODS FeCrAl, and (3) wrought FeCrAl are listed to provide a qualitative 

description of the state of scientific understanding for each alloy system. This table is not a complete 

primer on the state-of-the-art literature on each alloy system, but it does show the overlaps that exist 

between legacy ODS FeCrAl development efforts and recent lower Cr ODS FeCrAl development 

advancements that occurred over the past decade. On the right-hand side of the table, the colors indicate 

where gaps in understanding exist on a qualitative level and where the current knowledge of the wrought 

FeCrAl system might be able to help fill in some of the gaps when trying to increase the TRL for the low-

Cr ODS FeCrAl alloy system. For example, the steam oxidation kinetics for the low-Cr ODS FeCrAl 

alloys developed at ORNL are identical to those seen of the wrought FeCrAl alloy system [3, 4, 8, 26]. 

Additionally, recent developments of pressure resistance welding (PRW) at INL for wrought FeCrAl 

alloys and the ODS FeCr MA957 alloy indicate that this method might apply to ODS FeCrAl alloys also 

[27-31].  

 

Although processing effects pertaining to recent developments in FY20 are discussed later in this work, it 

is worth noting that the work performed at ORNL coupled with parallel development efforts on different 

~15Cr ODS FeCrAl alloys in Japan [22, 32, 33] caused significant leaps in ODS FeCrAl tube processing 

to accomplished. Additionally, it was demonstrated that nanoprecipitate size and mechanical properties 

can be optimized, depending on the ball milling and thermomechanical processing temperatures used for 

alloy production [10, 14, 21]. 
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Table 3. A selection of work to date on ODS FeCrAl in comparison with benchmarks from the previous 

technology implementation plan. 

Area 

Legacy ODS 

FeCrAl 

(PM2000/MA956) 

Low Cr ODS 

FeCrAl 

(10–15 wt.% Cr) 

Wrought 

FeCrAl 

Understanding 

for ODS 

FeCrAl 

     

Base material manufacturing [34-44] 
[8, 10-12, 22, 26, 

32, 33, 45] 
[5, 46, 47] 

 

Welding [48-57] N/A [27, 29-31]  

Tube fabrication [58] [19] [59-61]  

Unirradiated material properties [62-70] [8, 18, 19, 26] [5, 25]  

Irradiated material properties [71-74] [24, 75] [6, 76]  

Aqueous corrosion [77] N/A [78-80]  

Fretting N/A N/A [81-83]  

Hydrogen diffusion [84, 85] [86, 87] [25, 80, 88]  

Integral fuel tests N/A N/A n/a  

Loss-of-coolant analysis (LOCA)/ 

burst testing 
N/A N/A [15, 89, 90] 

 

Reactivity-initiated accident (RIA) N/A N/A [91, 92]  

Fuel melt/relocation N/A N/A N/A  

Cladding leak—normal operation N/A N/A N/A  

High-temperature steam oxidation [8, 93, 94] [8, 26] [3, 4]  

 

High quality of data  

Some data   

Little to no data  
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Table 4. Summary of prior milestone reports submitted in the ODS FeCrAl program. 

Area 
Fiscal 

year 
Description Reports 

Base material 

manufacturing 

FY14 
Manufacturing Gen 1 ATF ODS FeCrAl M3FT-14OR0202272  

Test base material Gen 1 ATF ODS FeCrAl M2FT-14OR0202271  

FY15 
Continue Testing of Generation 1 ATF ODS FeCrAl M3FT-15OR0202281  

Manufacturing of Gen 2 ATF ODS FeCrAl M3FT‐16OR020202091 

FY16 

Testing of Generation II ATF ODS FeCrAl  

M3FT‐16OR020202091 
Optimization of Generation II ATF ODS FeCrAl for thin 

tubing 

FY17 Testing of optimized Generation II ATF ODS FeCrAl  

Welding FY14 Initial fabrication of ODS FeCrAl laser welds M3FT-14OR0202273  

Tube 

fabrication 

FY14 Produce initial MA956 thin-walled tubing M3FT-15PN0202374  

FY15 

Produce thin walled tubing of an advanced ODS ferritic 

steel (MA956) using pilger processing 
M3FT-15PN0202371  

MA-956 Tubing Process Development Report M3FT-15PN0202373  

FY16 

Production thin plates of Generation II ATF ODS FeCrAl 

to demonstrate manufacturability of thin tubes 

Included in  

M3NT-18OR020202051 

Manufacturing of commercial Generation II ATF ODS 

FeCrAl powder  
M3FT-17OR020202081 

FY17 
Characterization of commercial Generation II ATF ODS 

FeCrAl powder 
M3FT-17OR020202081 

FY18 

Production of thin plates of optimized Generation II ATF 

ODS FeCrAl  
M3NT-18OR020202051 

Testing of thin plates of optimized Generation II ATF 

ODS FeCrAl  

Manufacturing of optimized Generation II ATF ODS 

FeCrAl thin tubes  M3NT-18OR020202051, 

M3FT-19OR020202071 Testing and reporting on optimized Generation II ATF 

ODS FeCrAl thin tubes properties  

FY19* 
Production of Additional Optimized Generation II ATF 

ODS FeCrAl rods for thin-walled tubes 
M4FT-19OR020202074  

FY20* 
Characterization of two new Generation II ATF ODS 

FeCrAl thin-walled Tubes 
Included in This Work 

Irradiated 

material 

properties 

FY15 
Prepare rabbit capsules for Generation I ATF ODS 

FeCrAl materials for HFIR irradiation  
M3CA-15OR0202241 

FY16 
Post irradiation examination of Generation I ATF ODS 

FeCrAl  
M3FT-16OR020203053 

FY17 
Prepare rabbit capsules for Generation II ATF ODS 

FeCrAl materials for HFIR irradiation  
M3NT-18OR020203043 

FY19 

Map radiation temperature and dose effects of optimized 

Generation II ATF ODS FeCrAl thin tubes – rabbit 

design 

M3FT-19OR020203045  

*Added after the expiration of the original technology implementation plan 
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Gaps pertaining to cladding behavior in reactor environments are readily apparent in Table 3. This is not 

just a historical problem for ODS FeCrAl alloys but is a problem that extends to ODS FeCr alloys also 

because the rate limiting step for increasing the TRL level has been the inability to minimize heat-to-heat 

variation between extruded ODS alloys and also the inability to produce cladding of prototypic geometry 

for irradiation campaigns. Fortunately, there have now been two successful tube development campaigns 

at ORNL for both the ODS FeCr and the ODS FeCrAl, each providing tubes approximately 2 m long, 

which is approaching the 4 m needed for a full-length cladding tube.  

 

These advances in tube production capabilities provide the first opportunity to significantly advance the 

TRL of the ODS FeCrAl alloy system in decades. To put this in perspective, the nine TRLs, which are 

adapted from Moorhouse [95], are outlined in Table 5 and range from basic science to the full integration 

of the technology in commercial applications. Even after a decade’s worth of research into the new lower 

Cr ODS FeCrAl cladding, the equivalent TRL would only be considered between a two or three. Since 

tubes approaching full length have been fabricated, the primary obstacle to increasing the TRL to a five—

the equivalent to a lead test rod (LTR) irradiated in the Advanced Test Reactor—is now possible with 

appropriate scaling of production. Having sufficient amounts of material to perform unirradiated and 

irradiated burst testing for LOCA, modified burst testing to simulate an RIA, and other mechanical 

property evaluations will take significant lengths of tubes. Additionally, additional lengths of thin-walled 

optimized Generation 2 ODS FeCrAl alloys will allow for a collaboration INL and the optimization of 

parameters for PRW for this specific alloy class. For these reasons, if ODS FeCrAl increased in TRL, 

then investment must be made in the continued scaling of tube production efforts now that more data are 

being generated on the effects of various heat treatments on the behavior of ODS FeCrAl tubes.  

Figure 10 provides a visual representation of significant milestone achievements for ODS FeCrAl alloy 

development as a function of time compared with the equivalent TRL outlined in Table 5. It is important 

to note that the timeline associated with future dates is heavily optimistic, as it doesn’t take into account 

performance criteria for fueled rod irradiations that have not yet been defined. For example, the fracture 

toughness of these ODS FeCrAl alloys has not yet been systematically studied, and limits have not been 

defined as prerequisites for fueled tube irradiations. This is a challenge for non-Zry ATF cladding alloys, 

as it is probable that application of licensure criteria established for zirconium will likely not capture the 

true degradation or performance mechanisms of systems such as FeCrAl, ODS FeCrAl, SiC/SiC, or other 

future cladding materials. Recent work on fracture toughness on unirradiated FeCrAl alloys (C06M and 

C36M) indicated ductile-to-brittle transition temperatures exceeding 100°C, indicating that the high Al 

content in these alloys is deleterious for fabricability at room temperature [75]. At present there is no 

defined performance criteria regarding fracture of cladding materials; it is widely appreciated that 

hydriding of zirconium during service will reduce its ductility, but there is no specific metric by which 

this reduction is correlated to reactor performance or safety. The ATF community needs to better 

understand this topic in order to develop more quantitative mechanical property requirements. 

 

GE is considering using a powder metallurgical approach to fabricate wrought FeCrAl alloys in the future 

instead of using casting-based methods due to ingot cracking issues. This willingness to move towards a 

powder metallurgical route for wrought FeCrAl, which already exhibits low fracture toughness at room 

temperature, does provide optimism for the possible application of the powder metallurgical ODS route 

for ATF cladding. Other performance criteria, such as weld strengths, burst properties, compositional 

control, etc. are also yet to be demonstrated, which could affect the trajectory for increasing TRL levels in 

the near future.  
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Table 5. Summary of TRLs pertaining to the ODS FeCrAl system. 

TRL  Description Examples 

1 Basic principles 
Fundamental studies of nucleation/growth of precipitates 

Fundamental alloying studies for ferritic materials 

2 Formulation of application 

Ball-milling studies for powder processing optimization 

Extrusions to assess general properties 

Corrosion studies as a function of composition 

3 
Analytical and experimental proof-of-

concept 

Fabrication of full-length tubes 

Demonstration of consistency in final product 

Mechanical and microstructural evaluation 

Comparative studies with wrought FeCrAl variants 

4 Component validation on laboratory scale 

Prototypic cladding irradiation in HFIR 

Burst-test validation of prototype cladding 

Post-irradiation examination to validate TRL levels 2–3 

data 

5 
Component validation in relevant 

environment 

LTR irradiation in Advanced Test Reactor 

Accident tests (RIA, LOCA) 

6 
Fully integrated prototype tested in a relevant 

environment 
Lead test assembly irradiation in Advanced Test Reactor 

7 System Prototype in operational environment Lead test assembly irradiation in commercial reactor 

8 Commercial demonstration Full-core demonstration in commercial reactor 

9 
Commercial operation in relevant 

environment 
Full replacement of Zircaloy with ODS FeCrAl 

 

 
Figure 10. Visual representation of significant milestone achievements for ODS FeCrAl alloy 

development as a function of time (blue) in comparison with the 

 equivalent TRL outlined in Table 5. 
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4. Conclusion 

Although the ODS FeCrAl concept is a longer term strategy for commercial vendors such as General 

Electric (GE) for ATF cladding, the ability to produce thin-walled cladding on length scales approaching 

that required to produce full-length LTR geometry coupled with GE’s move to pursue powder-based 

manufacturing of wrought FeCrAl alloys make ODS FeCrAl a more viable concept for continued 

development. The main challenge to the TRL increase for the concept is producing enough material to 

pursue avenues (e.g., PRW studies, irradiation campaigns, burst/modified burst testing initiatives) to place 

the concept in a position to produce LTRs for irradiation in the next half decade.  

FY20 work on the evaluation of two new ODS FeCrAl tubes shows the ability to produce tubes with 

consistent microstructure and mechanical properties based on the thermomechanical processing route 

used. Based on the work on these tubes, it is now possible to down-select the Fe-12Cr-6Al composition as 

the base composition for the CrAZY ODS alloy. In addition, studies regarding the high temperature burst 

and tensile properties of the recrystallized alloy are underway. Future work should focus on (1) the ability 

to produce full-length (4–5 m) cladding tubes of LWR-relevant dimensions and (2) the continued 

partnership with commercial collaborators to scale up tube production for more extensive data for 

sufficient unirradiated and irradiated data for quality assurance purposes.  
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